Tandem solar cells are the most straightforward route toward lowering the levelized cost of electricity. Despite the advance of monolithic perovskite/silicon tandem solar cells for high efficiencies of over 30%, challenges persist, especially in the compatibility of the perovskite fabrication process with industrial silicon bottom cells featuring micrometric pyramids. Here, we propose an elaborate regulation of the perovskite structural evolution and residual strains by constructing a vertically 3D/3D strained heterostructure (SHS) at the buried interface. Strain management can improve film quality by promoting the desired conformal crystal growth and suppressing defect formation. Additionally, this buried modification enhances charge extraction due to an increased built-in potential. These benefits translate into one of the best tandem solar cells based on industrial, fully textured Si wafers with an accredited steady-state efficiency of 31.5%.